Combined Weak Classifiers
نویسندگان
چکیده
To obtain classification systems with both good generalization performance and efficiency in space and time, we propose a learning method based on combinations of weak classifiers, where weak classifiers are linear classifiers (perceptrons) which can do a little better than making random guesses. A randomized algorithm is proposed to find the weak classifiers. They· are then combined through a majority vote. As demonstrated through systematic experiments, the method developed is able to obtain combinations of weak classifiers with good generalization performance and a fast training time on a variety of test problems and real applications.
منابع مشابه
Combinations of Weak Classifiers
To obtain classification systems with both good generalization performance and efficiency in space and time, we propose a learning method based on combinations of weak classifiers, where weak classifiers are linear classifiers (perceptrons) which can do a little better than making random guesses. A randomized algorithm is proposed to find the weak classifiers. They are then combined through a m...
متن کاملLearning Sequential Patterns for Lipreading
This paper presents a machine learning approach to Lip Reading and proposes a novel learning technique called sequential pattern boosting that allows us to efficiently search and combine temporal patterns to form strong spatio-temporal classifiers. Attempts at automatic lip reading need to address the demanding challenge that the problem is inherently temporal in nature. It is crucial to model ...
متن کاملImproved Boosting Algorithm Using Combined Weak Classifiers
From family of corrective boosting algorithms (i.e. AdaBoost, LogitBoost) to total corrective algorithms (i.e. LPBoost, TotalBoost, SoftBoost, ERLPBoost), we analysis these methods of sample weight updating. Corrective boosting algorithms update the sample weight according to the last hypothesis; comparatively, total corrective algorithms update the weight with the best one of all weak classifi...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملFlow Counting Using Realboosted Multi-sized Window Detectors
One classic approach to real-time object detection is to use adaboost to a train a set of look up tables of discrete features. By utilizing a discrete feature set, from features such as local binary patterns, efficient classifiers can be designed. However, these classifiers include interpolation operations while scaling the images over various scales. In this work, we propose the use of real va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996